Real-Time Nanomicroscopy via Three-Dimensional Single-Particle Tracking
نویسندگان
چکیده
منابع مشابه
Real-time nanomicroscopy via three-dimensional single-particle tracking.
We developed a new method for real-time, three-dimensional tracking of fluorescent particles. The instrument is based on a laser-scanning confocal microscope where the focus of the laser beam is scanned or orbited around the particle. Two confocal pinholes are used to simultaneously monitor regions immediately above and below the particle and a feedback loop is used to keep the orbit centered o...
متن کاملThree-dimensional particle tracking via bifocal imaging.
We introduce a bifocal imaging method that enables three-dimensional (3D) tracking of both fluorescent and nonfluorescent particles. We accomplish this by simultaneously imaging a focused plane, for in-plane position (x,y), and a defocused plane, for out-of-plane position (z), of a molecule using a single CCD camera. We applied our method to several systems including in vivo melanosome tracking...
متن کاملSingle-camera, three-dimensional particle tracking velocimetry.
This paper introduces single-camera, three-dimensional particle tracking velocimetry (SC3D-PTV), an image-based, single-camera technique for measuring 3-component, volumetric velocity fields in environments with limited optical access, in particular, optically accessible internal combustion engines. The optical components used for SC3D-PTV are similar to those used for two-camera stereoscopic-µ...
متن کاملReal-time multi-parameter spectroscopy and localization in three-dimensional single-particle tracking.
Tracking of single particles in optical microscopy has been employed in studies ranging from material sciences to biophysics down to the level of single molecules. The technique intrinsically circumvents ensemble averaging and may therefore reveal directly mechanistic details of the involved dynamic processes. Such processes range from translational and rotational motion to spectral dynamics. W...
متن کاملAdaptive optics enables three - dimensional single particle tracking ” Manuel
We present the coupling of atomic force microscopy (AFM) and nuclear magnetic resonance (NMR) technologies to enable topographical, mechanical, and chemical profiling of biological samples. Here, we fabricate and perform proof-of-concept testing of radiofrequency planar microcoils on commercial AFM cantilevers. The sensitive region of the coil was estimated to cover an approximate volume of 19....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ChemPhysChem
سال: 2009
ISSN: 1439-4235,1439-7641
DOI: 10.1002/cphc.200900436